
GLPI JSON Protocol
Release 1.0

GLPI Project, Teclib'

Jan 26, 2022

CONTENTS

1 Introduction 1

2 Future evolution 3

3 COMMON 5
3.1 Transport protocol . 5
3.2 HTTP headers . 5

3.2.1 GLPI-Agent-ID . 5
3.2.2 GLPI-Request-ID . 5
3.2.3 Content-Type . 6
3.2.4 Accept . 6
3.2.5 Pragma . 6
3.2.6 GLPI-CryptoKey-ID . 6
3.2.7 GLPI-Proxy-ID . 7

3.3 JSON template messages . 7
3.3.1 Requests . 7
3.3.2 Answers . 7
3.3.3 Error answers . 8

4 CONTACT 9
4.1 A. Agent CONTACT request . 9

4.1.1 A1. Agent does NOT know server supported content-types 9
4.1.2 A2. Agent think it knows server supported content-types 10

4.2 B. Server CONTACT answer . 11
4.3 Error handling . 12

5 INVENTORY 15
5.1 A. Agent request to submit an inventory . 15
5.2 B. Server answer to a submitted inventory . 15

6 REGISTER 17
6.1 Protocol . 18

6.1.1 1. First message from the agent . 18
6.1.2 2. Server answer . 18
6.1.3 3. Agent token validation message . 19
6.1.4 4. Server challenge answer . 20

6.2 Cryptographic exchanges . 21
6.2.1 1. First challenge from the server . 21
6.2.2 2. Challenge handling in the agent . 21
6.2.3 3. Answer challenge handling in the server . 22
6.2.4 4. Final answer challenge handling in the agent . 22

i

6.3 Remarks . 23
6.3.1 About port & proxy . 23

7 CONFIGURATION 25

8 NETDISCOVERY 27

9 NETINVENTORY 29

10 ESX 31

11 COLLECT 33

12 DEPLOY 35

13 WAKEONLAN 37

14 REMOTEINVENTORY 39

15 Specifications license 41

ii

CHAPTER

ONE

INTRODUCTION

GLPI 10+ and GLPI-Agent can communicate using a JSON protocol described here.

GLPI agent is a tool with few important constraints to know when thinking about protocol:

• by design, it schedules by itself to run its installed tasks at an expected time

This is why we will talking about protocol by task: one task => one protocol spec

By the way, the first protocol spec is not really an agent task but is inherited from FusionInventory agent history. It's
related to a message named PROLOG, but for GLPI Agent we will name it CONTACT and it specifies mostly the first
contact a GLPI Agent will have to do with its configured server, even when not knowing what kind of server it is.

GLPI Agent will be better designed to communicate directly with a GLPI server. With that goal in mind, we need to
first specify few features COMMON to all task protocol specs.

1

GLPI JSON Protocol, Release 1.0

2 Chapter 1. Introduction

CHAPTER

TWO

FUTURE EVOLUTION

Few evolutions are expected to this JSON protocol as we wanted to enhance communication between GLPI and agents:

• Agent will be able to use REGISTER to secure protocol exchanges

• Agent will be able to use CONFIGURATION to get its configuration from server

• As agent supported tasks will be supported in GLPI 10 Core, they will start using:

– NETDISCOVERY protocol specs

– NETINVENTORY protocol specs

– COLLECT protocol specs

– DEPLOY protocol specs

– ESX protocol specs

– WAKEONLAN protocol specs

• It should also be possible to setup remoteinventory tasks with REMOTEINVENTORY

3

GLPI JSON Protocol, Release 1.0

4 Chapter 2. Future evolution

CHAPTER

THREE

COMMON

Common specs to all task protocol specs with some specific explanations on some goal.

Hint: Supported since GLPI 10.0.0

3.1 Transport protocol

Messages are passed between client and server via HTTP or HTTPS protocol.

3.2 HTTP headers

3.2.1 GLPI-Agent-ID

An agent identity MUST be set in HTTP headers:

• This is the agentid

• agentid HTTP header: GLPI-Agent-ID

• agentid format: plain text UUID which can be reduced in a 128 bits raw id by code

• example: 3a609a2e-947f-4e6a-9af9-32c024ac3944

• it is generated by the agent the first time it starts

• server must also set it in answer to specify agent destination, this can be used by a proxy agent to route
server answer

3.2.2 GLPI-Request-ID

A request id CAN be set in HTTP headers:

• HTTP header: GLPI-Request-ID

• format: a 8 digit hexadecimal string in higher case like 42E6A9AF1

• When present, it MUST be set back in answer

• When present, it SHOULD be logged

• It MUST be set by a proxy in an answer when the answer is still not definitively known

5

GLPI JSON Protocol, Release 1.0

• It MUST be set when using a GET request to query the final request status from a proxy. It MUST then be
identical the the one provided by the previous proxy answer.

3.2.3 Content-Type

The content type MUST be set in HTTP headers and follow the official public specs:

• HTTP header: Content-Type

• The following content type are to be supported:

– application/json: MANDATORY SUPPORT This format must be supported as this will be the
default format

– application/x-compress-zlib: Compressed JSON with zlib compression

– application/x-compress-gzip: Compressed JSON with gzip compression

– application/x-compress-br: Compressed JSON with brotli compression

– application/xml: Only for [CONTACT](specs/CONTACT) protocol

3.2.4 Accept

A party CAN announce which content types it supports setting Accept HTTP header

• HTTP header: Accept

• format: must follow RFC7231

• can be used to try another content type on "unsupported content-type" error

• Example:

– Accept: application/json

– Accept: application/xml; q=0.1, application/json; q=0.5, application/
x-compress-zlib; q=0.7, application/x-compress-gzip; q=0.8, application/
x-compress-br

3.2.5 Pragma

The agent requests MUST includes the pragma header to avoid any caching done by the server:

• HTTP header and value: Pragma: no-cache

3.2.6 GLPI-CryptoKey-ID

If an encryption key has been shared and encryption is enabled, a side party must announce the key owner used to encrypt data: this is generally agentid

• HTTP header: GLPI-CryptoKey-ID

• format: same as agentid

• the same encryption should be used when answering unless encryption is disabled on a side

• in a proxy context, this id can be different than GLPI-Agent-ID

• when this header is missing, data are not expected to be encrypted

6 Chapter 3. COMMON

https://tools.ietf.org/html/rfc7231#page-38

GLPI JSON Protocol, Release 1.0

3.2.7 GLPI-Proxy-ID

When a GLPI-Agent is used as a proxy, it MUST set/update this HTTP header with its own agentid.

• HTTP header: GLPI-Proxy-ID

• format: list of agentid separated by commas

• a proxy agent must check its agentid is still not in the list, otherwise it MUST answer a HTTP 404 error
with a JSON error message (see below): "proxy-loop-detected"

• a proxy agent parameter should define the maximum number of proxy to be set in the list. In the case, the
header reaches the maximum on a proxy, it MUST answer a HTTP 404 error with a JSON error message
(see below): "too-many-proxy". By default, the maximum number of proxy should be set to 5 as that's still
large and most usercase will only use 1 proxy.

• GLPI server should show the proxy list in the agent management panel.

3.3 JSON template messages

3.3.1 Requests

{
"action": "<token>"

}

Description:

• "action": [optional] but should be set to a supported token otherwise action defaults to inventory and then
MUST respect the INVENTORY protocol specs.

3.3.2 Answers

{
"status": "<token>",
"message": "<string>",
"expiration": "<delay definition>"

}

Description:

• "status": [mandatory] the resulting status of the request related to the action. Must be a supported token,
see related protocol.

• Common tokens: "pending", "error", "ok"

• The "pending" token with a short "expiration" delay could be used by proxy agents to tell agents to retry
the same request soon as the proxy has the time to obtain the server expected answer.

• "message": [optional] a message to keep in log as an error reason or for debugging purpose

• "expiration": [optional] the delay before the agent can send another message for the current action. The
delay may have different meanings regarding the related action. The delay definition must be a positive
integer number immediately followed by an optional letter defining the number unit. The letter should be
one of "s", "m", "h", "d" which are respectively representing seconds, minutes, hours and days. The default
is "h" when no unit follows the number.

3.3. JSON template messages 7

GLPI JSON Protocol, Release 1.0

• if not set, no delay is required and next request can be handled immediately

• in case of error or no answer, the latest delay or configured one should be used by the client

• example: "1d", "24", "1m", "30s", "6h"

3.3.3 Error answers

{
"status": "error",
"message": "unsupported content-type"

}

Description:

• On error, the HTTP answer error code MUST be set with the 4XX or 5XX HTTP related error

• For 4XX errors, status code in free, but the answer SHOULD be a short JSON message with the "error"
value set as "status" property and eventually a "message" property to help the other party to analyze the
error

8 Chapter 3. COMMON

CHAPTER

FOUR

CONTACT

CONTACT protocol is needed to permit GLPI Agent to detect it communicates with a supported server (GLPI, Fu-
sionInventory plugin for GLPI).

Hint: Supported since GLPI 10.0.0

Features:

• Keep compatibility with FusionInventory as fallback

• Cover all the same features then FusionInventory protocol

• Add more features:

– agent tells server which tasks are installed

– agent tells server which tasks are enabled

– server tells which tasks has to be disabled

– agent tells its configured tag so it can have a meaning for any task

4.1 A. Agent CONTACT request

The agent MUST set new HTTP headers accordingly to the COMMON protocol specs.

2 cases: the agent knows or not server supported content types. A new agent option should permit to force this "knowl-
edge".

4.1.1 A1. Agent does NOT know server supported content-types

Based on what is still doing FusionInventory agent:

• the agent can send a HTTP request named PROLOG with such following content:

<REQUEST>
<QUERY>PROLOG</QUERY>
<TOKEN>12345678</TOKEN>
<DEVICEID>foo-agent-deviceid</DEVICEID>

</REQUEST>

About HTTP headers in PROLOG request:

9

GLPI JSON Protocol, Release 1.0

• Content-Type is restricted to the following values, depending on supported compression scheme as they are
the only ones supported by FusionInventory for GLPI plugin:

– application/xml

– application/x-compress-zlib

– application/x-compress-gzip

4.1.2 A2. Agent think it knows server supported content-types

This can indeed be an assumption based on previously exchanged messages.

• the agent sends a HTTP request named CONTACT with the following JSON possible content:

{
"action": "contact",
"deviceid": "classic-agent-deviceid",
"name": "GLPI-Agent",
"version": "1.0",
"installed-tasks": [
"inventory",
"register",
"..."

],
"enabled-tasks": [
"collect",
"deploy",
"..."

],
"httpd-port": "62354",
"httpd-plugins": {
"ssl": {
"disabled": "no",
"ports": [
"0",
"62356"

],
"ssl_cert_file": "cert.pem",
"ssl_key_file": "key.pem"

},
"proxy": "disabled",
"toolbox": "disabled",
"..."

},
"tag": "awesome-tag"

}

Description:

• action: [mandatory] must be set to "contact"

• deviceid: [mandatory] just a friendly string to name an agent

• name: [mandatory] the product name of the agent

• version: [mandatory] the product version of the agent

10 Chapter 4. CONTACT

GLPI JSON Protocol, Release 1.0

• installed-tasks: [mandatory] a list of agent installed tasks

• enabled-tasks: [optional] a list of enabled task if different than "installed-tasks"

• httpd-port: [optional] the httpd port used by the agent if it listens on

• httpd-plugins: [optional] a list of agent httpd plugins with "disabled" status or its configuration if en-
abled

• tag: [optional] the "tag" setup in the agent configuration

4.2 B. Server CONTACT answer

As the server detects GLPI-Agent-ID as HTTP header, it SHOULD always answer using the new protocol. The answer
could have the following content:

{
"status": "<token>",
"message": "<optional string>",
"tasks": {
"inventory": {
"no-category": "processes",
"server": "glpi",
"version": "10.0.0"

},
"networkinventory": {
"server": "glpiinventory",
"version": "1.0"

},
"deploy": {
"server": "glpiinventory",
"version": "1.0"

}
},
"disabled": [
"collect",
"wakeonlan",
"remoteinventory"

],
"jobs": {
"networkinventory": [
{
"task": "networkinventory",
"jobid": "this job id",
"credentials": ["1", "2"]

}
],
"deploy": [
{
"task": "deploy",
"jobid": "this job id"

}
]

},
(continues on next page)

4.2. B. Server CONTACT answer 11

GLPI JSON Protocol, Release 1.0

(continued from previous page)

"credentials": {
"1": {
"community": "public",
"type": "snmp",
"version": "v1"

},
"2": {
"community": "public",
"type": "snmp",
"version": "v2c"

}
},
"expiration": "1d"

}

Description:

• status: [mandatory] the resulting status of the request in "error", "pending", "ok"

• expiration: [mandatory] the delay before asking for another CONTACT. It has the same purpose than
PROLOG_FREQ but includes a unit, example "1d" for one day.

• tasks: [optional] a list of task configuration objects reduced as JSON structure

– should be used to pass params to listed tasks

– as example, "url" can be set to set another URL to request during the task processing

– the list can be empty

• disabled: [optional] a list of tasks disabled on server side so it won't be run by the agent and the agent
will log the task is disabled

• jobs: [optional] a dictionary with task names as key and list of jobs as values. Each jobs list is an ordered
list of job objects in the task related format related as JSON structure.

• credentials: [optional] a dictionary of needed credentials. Keys are positive integer numbers and should
be referenced in a job object. Values are credentials objects as JSON structure.

• message: [optional] message to be logged on agent side with error or at debug level

4.3 Error handling

In case of error on server side, "status" should be set to "error" in the answer and a meaningful and short string should
be set as "message". The returned HTTP code should be set to 4XX. See COMMON for error message specs.

Example: .. code:

{
"status": "error",
"message": "malformed json",
"expiration": "1d"

}

12 Chapter 4. CONTACT

GLPI JSON Protocol, Release 1.0

{
"status": "error",
"message": "forbidden",
"expiration": "1d"

}

{
"status": "error",
"message": "unsupported content-type",
"expiration": 24

}

{
"status": "error",
"message": "busy server",
"expiration": "30m"

}

4.3. Error handling 13

GLPI JSON Protocol, Release 1.0

14 Chapter 4. CONTACT

CHAPTER

FIVE

INVENTORY

INVENTORY protocol can be used by Inventory, NetDiscovery and NetInventory agent tasks, and also by injector, to
submit any inventory.

Hint: Supported since GLPI 10.0.0

5.1 A. Agent request to submit an inventory

The request MUST match GLPI "inventory_format" specs and COMMON .

{
"action": "inventory",
"deviceid": "<device id>",
"content": {

"...inventory object following inventory_format..."
},
"itemtype": "Computer"

}

Description:

• "action": [optional] and could be set to "inventory", "netdiscovery" or "netinventory", defaults is "inven-
tory" when missing

• "deviceid": [mandatory] as defined in inventory_format

• "content": [mandatory] as defined in inventory_format

• "itemtype": [optional] as defined in inventory_format but defaults to Computer

5.2 B. Server answer to a submitted inventory

See also COMMON protocol specs.

On successul submission, we expect a simple answer:

{
"status": "ok",
"expiration": 24

}

15

https://github.com/glpi-project/inventory_format
https://github.com/glpi-project/inventory_format
https://github.com/glpi-project/inventory_format
https://github.com/glpi-project/inventory_format

GLPI JSON Protocol, Release 1.0

The server can return an error like:

{
"status": "error",
"message": "bad-format",
"expiration": 24

}

or

{
"status": "error",
"message": "busy server",
"expiration": 1

}

On busy server error, the agent should keep the inventory and retry its submission at the specified expiration.

16 Chapter 5. INVENTORY

CHAPTER

SIX

REGISTER

REGISTER protocol should be used by the GLPI Agent Register task to fully register the agent with a GLPI server. It
could also be used to register the agent on another agent acting as a proxy agent thanks to its Proxy plugin.

Attention: This specification is still considered as a DRAFT as not implemented in GLPI 10 and GLPI-Agent

Features:

• agent is identified by its agentid in UUID format

• new configuration parameter on agent side: token

– without it or if it is invalid, only simple registration is possible and in that case the server should be
configured to accept that

– with a valid token, all exchanges with the server after registration will be secured and encrypted, even
if not done throught a SSL connection

– the token format is UUID string as:

∗ this format is indeed representing 16 bytes in hexdecimal

∗ this can be used as 128 bits bloc like 128 bits key for AES cipher

• a 128 bits encryption key can be provided during the registration

– the key will have to be renew after an expiration

• this protocol could be supported by the agent Proxy plugin:

– the proxy agent could manage its own tokens, unknown from the server

– the proxy agent could not know the final token and then just pass messages being unable to know what
secrets are exchanged

– the registration process could also permit server to contact agents behind proxy agents

• on server side:

– we need a way to manage tokens

∗ token creation

∗ token revocation involving all agent provided keys revocation

– each token can be conditioned on the use of a tag

– we must be able to revoke any key provided to an agent or to ask for a registration renew

– agent keys management: cleanup expired keys

– new agent could first have to be manually validated

17

GLPI JSON Protocol, Release 1.0

– encryption could be optional: we need an option to disable encryption

6.1 Protocol

Few messages could be exchange between agent and server during agent registration. The base format of messages is
JSON and should respect the COMMON protocol specs.

6.1.1 1. First message from the agent

Example:

{
"action": "register",
"deviceid": "classic-agent-deviceid",
"port": 62354,
"name": "GLPI-Agent",
"version": "1.0",
"tag": "awesome-tag"

}

Description:

• action: [mandatory] must be set to "register"

• deviceid: [mandatory] just a friendly string to name an agent

• port: [mandatory] the TCP port on which the agent is joinable or 0 if not joinable

• name: [mandatory] the product name of the agent

• version: [mandatory] the product version of the agent

• tag: [optional] the setup "tag" in the agent configuration

6.1.2 2. Server answer

Examples:

{
"status": "registered",
"expiration": "30d"

}

{
"status": "error",
"message": "forbidden",
"expiration": "4h"

}

{
"status": "pending",
"needs": "token-validation",

(continues on next page)

18 Chapter 6. REGISTER

GLPI JSON Protocol, Release 1.0

(continued from previous page)

"expiration": "1m",
"challenge": "a3540c0e-ac3c-46cf-892f-692ca02209f8"

}

Description:

• status: [mandatory] the resulting status of the request in registered, error or pending

• message: [optional] a message to keep in log as an error reason or for debugging purpose

• expiration: [mandatory] the expiration of the status

• needs: [optional] a string in token-validation, manual-validation, server-validation but
should be set if status is pending

• challenge: [optional] a string in UUID format which is a 128 bits cryptographic challenge (de-
tails in Cryptographic exchanges chapter). It must be set when status is pending and needs is
token-validation.

About expiration, it has different meanings:

• if status is registered, the agent will have to register again before the expiration:

– by default, it tries to register again after the half of the expiration

– if it has no answer, it will wait at the middle of the remaining delay

– the delay should not be lower than the CONTACT protocol delay

• if status is error, the agent should not try to register (and even to communicate) before the given expi-
ration

• if status is pending:

– if needs is token-validation, this is the expiration of the challenge as the agent should answer the
challenge asap

– if needs is server-validation or manual-validation, this is the delay for the next contact with
the same request. server-validation can be returned by a proxy and should not be used by GLPI
server.

The agent is not expected to request another message unless status is pending and needs is token-validation.
Unless that case, next agent register message is like a new registration, the big difference is the message is encrypted if
it is registered and the expiration has not been reached.

6.1.3 3. Agent token validation message

Example:

{
"action": "register",
"challenge": "07f2cc8b-194c-45b9-a4e8-68a78129b8e6"

}

{
"action": "register",
"challenge": "failure"

}

6.1. Protocol 19

GLPI JSON Protocol, Release 1.0

Description:

• action: [mandatory] must be set to register

• challenge: [mandatory] in principle, a string in UUID format which is a 128 bits cryptographic challenge
(details in Cryptographic exchanges chapter)

– It must be the answer to the challenge defined by the server

– It case of error on agent side, can be set to a message like simply failure

6.1.4 4. Server challenge answer

Examples:

{
"status": "registered",
"expiration": "30d",
"challenge": "393c263e-1168-44a7-bbdc-6d2ce8514db0",
"crypto": "680ca885-e017-44a4-81c9-729f759ee3c6"

}

{
"status": "pending",
"expiration": "1m"

}

{
"status": "error",
"message": "challenge failed",
"expiration": "1h"

}

Description:

• status: [mandatory] the resulting status of the request in registered, error or pending

– pending is to be used by proxy agents. The agent will have to send again the same challenge at
expiration.

• message: [optional] a message to keep in log as an error reason or for debugging purpose

• expiration: [mandatory] the expiration of the status

• challenge: [optional] a string in UUID format which is the final 128 bits encrypted server answer chal-
lenge (details in Cryptographic exchanges chapter)

• crypto: [optional] a string in UUID format which is a 128 bits encrypted key (details in Cryptographic
exchanges chapter). It is optional as encryption may be not required by the server.

20 Chapter 6. REGISTER

GLPI JSON Protocol, Release 1.0

6.2 Cryptographic exchanges

All cryptographic exchanges are based on AES with 128 bits keys.

6.2.1 1. First challenge from the server

When the server has to create a 128 bits challenge:

• it uses 8 random bytes (64 bits) as first part, this is the server secret

• it select an agentid: the one from the HTTP header or one from the GLPI-Proxy-ID HTTP header list.
This is to support the case where we are sure we didn't share a token with the agent but we trust a proxy.
The tag could be used to trust a proxy.

• it concatenates the first 8 random bytes with the last 8 bytes of the selected agentid taken as raw 16 bytes

• it encrypts this 128 bits secret with AES cipher using the token as 128 bits key. The token is the one the
server expects the target agent knows.

• it transforms the secret as UUID string to be included in the JSON answer as challenge parameter

6.2.2 2. Challenge handling in the agent

When an agent receive a first server answer with a challenge, it has to:

• transform the UUID challenge into a 128 bits bloc

• decrypt the bloc with AES cypher using its configured token as 128 bits key to obtain the secret

• compare the last 64 bits of the secret to its own agentid last 64 bits:

– if the bits doesn't match:

∗ if the agent is not a proxy, this is an error, the agent can send a message with failure as
challenge parameter. The agent expect a status set to error and an expiration set to a
delay before retrying a registration

∗ if the agent is a proxy and does the registration on the behalf of another agent, it keeps the challenge
to be include in the answer for the next contact of the related agent

· security notes: if agent and proxy shares the same token, the proxy could see the 64 bits matched
the target agentid and then it knows the secret in the first 64 bits. It is then advised to not use the
same tokens for agent and proxy. To be safe, each proxy should even have its own and personal
token. In that way, the proxy won't be able to know anything about all exchange between the
agent and the server

– if the bits matches:

∗ the agent is the target of the challenge

∗ the challenge secret is the first 64 bits

• the agent uses the challenge secret as first 64 bits for the answer challenge

• it uses 8 random bytes (64 bits) as agent secret for the last 64 bits and obtain a 128 bits answer challenge

• it encrypts this 128 bits secret with AES cipher using the token as 128 bits key. Of course, the token is the
one the agent expects the server knows.

• it transforms the encrypted bloc as UUID string to be included in the JSON answer as challenge parameter

6.2. Cryptographic exchanges 21

GLPI JSON Protocol, Release 1.0

6.2.3 3. Answer challenge handling in the server

As an agent proxy knowing the answer is expected by a server:

• returns a message with status set to pending

• transmit the challenge to the server

Otherwise as the final server:

• transform the UUID answer challenge into a 128 bits bloc

• decrypt the bloc with AES cypher using the expected token as 128 bits key to obtain the secret

• compare the first 64 bits of the secret to the expected server secret defined in step 1

– if the bits doesn't match:

∗ return an error message and abort the registration

• as the bits matches, the last 64 bits will be used as agent secret

• agent secret and server secret are concatenated in that order into a 128 bits bloc

• the bloc is encrypted with AES cipher using the token as 128 bits key

• the encrypted bloc is transformed as UUID string to be included in the final JSON answer as challenge
parameter

• a private 128 bits keys is generated as 16 random bytes an associated to the agent

• the private key as 128 bits blocs is encrypted with AES cipher using the token as 128 bits key

• that encrypted bloc is transformed as UUID string to be included in the final JSON answer as crypto
parameter

6.2.4 4. Final answer challenge handling in the agent

As an agent proxy knowing the answer is not for itself:

• the message is saved

• the saved message is transmitted to the following agent at next contact

Otherwise as the target agent:

• transform the UUID answer challenge into a 128 bits bloc

• decrypt the bloc with AES cypher using the token as 128 bits key to obtain the secret

• compare the first 64 bits of the secret to the expected agent secret defined in step 2

– if the bits doesn't match:

∗ send an register message with failure as challenge

• compare the last 64 bits of the secret to the expected server secret defined in step 1

– if the bits doesn't match:

∗ send an register message with failure as challenge

• if present, transform the UUID in crypto into a 128 bits bloc

• decrypt the bloc with AES cypher using the token as 128 bits key to obtain the communication 128 bits
key. This key can now be used for all future communications.

22 Chapter 6. REGISTER

GLPI JSON Protocol, Release 1.0

6.3 Remarks

6.3.1 About port & proxy

The port should be set to the proxy one on the first proxy transmitted message toward next server unless the agent
or a proxy has its HTTP listener disabled. So if an option is enabled on proxy, it will also be able to join the agent
on the behalf of the server. This should even work with more than one proxy between server and target agent. Only
asynchronous messages should be handled that way, so each protocol specs should support asynchronous messaging.

6.3. Remarks 23

GLPI JSON Protocol, Release 1.0

24 Chapter 6. REGISTER

CHAPTER

SEVEN

CONFIGURATION

Attention: This specification is planned for the future

25

GLPI JSON Protocol, Release 1.0

26 Chapter 7. CONFIGURATION

CHAPTER

EIGHT

NETDISCOVERY

Attention: This specification is planned for the future

27

GLPI JSON Protocol, Release 1.0

28 Chapter 8. NETDISCOVERY

CHAPTER

NINE

NETINVENTORY

Attention: This specification is planned for the future

29

GLPI JSON Protocol, Release 1.0

30 Chapter 9. NETINVENTORY

CHAPTER

TEN

ESX

Attention: This specification is planned for the future

31

GLPI JSON Protocol, Release 1.0

32 Chapter 10. ESX

CHAPTER

ELEVEN

COLLECT

Attention: This specification is planned for the future

33

GLPI JSON Protocol, Release 1.0

34 Chapter 11. COLLECT

CHAPTER

TWELVE

DEPLOY

Attention: This specification is planned for the future

35

GLPI JSON Protocol, Release 1.0

36 Chapter 12. DEPLOY

CHAPTER

THIRTEEN

WAKEONLAN

Attention: This specification is planned for the future

37

GLPI JSON Protocol, Release 1.0

38 Chapter 13. WAKEONLAN

CHAPTER

FOURTEEN

REMOTEINVENTORY

Attention: This specification is planned for the future

39

GLPI JSON Protocol, Release 1.0

40 Chapter 14. REMOTEINVENTORY

CHAPTER

FIFTEEN

SPECIFICATIONS LICENSE

These specifications are distributed under the terms of the MIT Licence.

41

https://opensource.org/licenses/MIT

	Introduction
	Future evolution
	COMMON
	Transport protocol
	HTTP headers
	GLPI-Agent-ID
	GLPI-Request-ID
	Content-Type
	Accept
	Pragma
	GLPI-CryptoKey-ID
	GLPI-Proxy-ID

	JSON template messages
	Requests
	Answers
	Error answers

	CONTACT
	A. Agent CONTACT request
	A1. Agent does NOT know server supported content-types
	A2. Agent think it knows server supported content-types

	B. Server CONTACT answer
	Error handling

	INVENTORY
	A. Agent request to submit an inventory
	B. Server answer to a submitted inventory

	REGISTER
	Protocol
	1. First message from the agent
	2. Server answer
	3. Agent token validation message
	4. Server challenge answer

	Cryptographic exchanges
	1. First challenge from the server
	2. Challenge handling in the agent
	3. Answer challenge handling in the server
	4. Final answer challenge handling in the agent

	Remarks
	About port & proxy

	CONFIGURATION
	NETDISCOVERY
	NETINVENTORY
	ESX
	COLLECT
	DEPLOY
	WAKEONLAN
	REMOTEINVENTORY
	Specifications license

